HgF₂ and CHBr₂CHBr₂.—CHBr₂CHBr₂ reacts with HgF₂ already at 100°, very easily at $150-160^{\circ}$, to form CHBr₂CHF₂ quantitatively.

Summary

The course of the fluorination of CHX₂CHX₂

compounds is presented. The following new compounds CHClBrCHClF, CHClBrCHF₂, CH₂-ClCF₃, CHFBrCHF₂ and CHF₂CHF₂ are described.

Columbus, Ohio

RECEIVED MARCH 23, 1936

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AT THE OHIO STATE UNIVERSITY]

Fluoroethanes and Fluoroethylenes. V

BY ALBERT L. HENNE AND MARY W. RENOLL

The present paper presents the fluorination of halo derivatives of ethane containing three or four atoms of hydrogen in their molecule, and describes several new fluorinated compounds. Preceding papers¹ have shown the course of the fluorination in derivatives containing less hydrogen and have emphasized the tendency to lose hydrogen halides, to rearrange and to resist fluorination with antimony fluorides.

The main result of the present investigation is the finding that, when the halogen atoms are all located on the same carbon atom, fluorination proceeds rapidly to completion, without simultaneous chlorination or loss of hydrogen halides. In marked opposition, derivatives having both hydrogen and an halogen on each of their carbon atoms resist fluorination with antimony fluorides considerably, and when they are affected they undergo important decomposition and chlorination. The fluorinated compounds exhibit a marked difference in their stability, in favor of the asymmetrical compounds: CH₃CHF₂ is perfectly stable, while CH₂FCH₂F decomposes spontaneously, and CH₂FCHF₂ hydrolyzes slowly while CH₃CF₃ is nearly inert physiologically as well as chemically.

Two methods of fluorination have been used, namely, (1) the interaction of an organic polychloride with antimony fluoride in the presence of SbCl₅ or Br, and (2) the interaction of a polybromide with mercuric fluoride. The first procedure gave excellent results with CH₃CCl₃, fair results with CH₃CHCl₂, mediocre results with CH₂CHCl₂, and no results with CH₂ClCH₂Cl and with CH₃CH₂Cl. The second method was used with success to fluorinate CH₂BrCHClBr, CH₂Br-CHBr₂, CH₂ICHF₂, CH₂BrCH₂Br, CH₃CHBr₂ and CH₃CH₂Br.

(1) THIS JOURNAL, 58, 402, 404, 887 (1936).

The properties of the new compounds only are listed in Table I. The known compounds produced had physical properties in good agreement with those published by Swarts (see Beilstein). The analyses of the new derivatives were successfully performed as previously described,² while the molecular weights were measured by freezing point depression in benzene for the liquids and by quantitative analysis of known volumes for the gases. All were close to the theoretical quantities, and appear in Table I.

The atomic refractions for fluorine listed in the seventh column of Table I were obtained by subtracting from the observed molecular refraction the sum of the increments for C, H, Cl and Br. Most values are in line with those obtained by Swarts³ for similar compounds, but the very first one is entirely out of line, and this remains unexplained. This value was repeatedly verified, and no error was detected in the experimentation; it is true that CH_3CCl_2F is not extremely stable, but its decomposition is quite slow and does not explain the fact that the density is about 0.04 lower than could be expected by analogy. The chlorine analysis is also too high, an indication of impurity. The molecular weight is correct.

Experimental Details

(1) Fluorination of $CH_{3}CCl_{3}$.—The fluorinating agent is a mixture of 90% SbF₃ and 10% SbF₃Cl₂. It is placed in a metal container, equipped with a metal dephlegmator bearing a pressure gage, thermometer and needle valve. The container is cooled in an ice-bath, with the needle valve closed. This creates a partial vacuum, and makes it possible to suck ice-cold $CH_{3}CCl_{3}$ into the equipment. The relative quantities of reagents depend on whether the mono-, di- or trifluoride is the desired final product. The reaction vessel is allowed to come slowly to room temperature, as the reaction starts very vigorously. By control

⁽²⁾ Hubbard and Henne, THIS JOURNAL, 56, 1078 (1934).

⁽³⁾ Swarts, J. chim. phys., 20, 30 (1923).

TABLE I											
		B. p., 760 mm., °C.	t°	d ^t 4	n ^t D	MRD	A. R. F.	F, %	C1, %	Br, %	Mol. wt.
	CH ₃ CCl ₂ F	31.7-31.8	5	1.2673	1.38679	21.72	1.65	15.5	62.2	••	116.5
	CH ₃ CClF ₂	-9.6						35.1	38.2		100.0
	CH3CE3	-46.7						67.8			84.0
	CH₂C1CHC1F	73.7-73.9	2 0	1.3814	1.41132	21.03	0.96	16.2	60.4		116.0
	CH_2ClCHF_2	35.1	15	1.312	1.3528	16.60	1.26	35.3	38.2		98.1
	CH ₂ FCHF ₂	5						67.6			83.7
	ÇH₂BrCHClF	96.6	20	1.82913	1.45463	23.93	0.96	11.8	21.8	49.5	161
	CH_2BrCH_2F	71.5-71.8	25	1.7044	1.42261	18.96	0.86	15.2		63.9	125
	$CH_{2}ICH_{2}F$	98-102									
	CH ₃ CHClF	16.1-16.2						22.9	42.8		80.9
	CH_3CHF_2	-24.7						57.5			66.0
	$CH_{2}FCH_{2}F$	1011									

of the temperature and pressure, it is possible to distil from the dephlegmator the desired fluoride. CH_8CCl_2F and CH_3CClF_2 have been obtained in yields of 85 to 90%, while CH_3CF_2 has been obtained currently in 30% yield; this last yield could be considerably improved if one were to try to produce this compound exclusively. Rough indications are that a 60 to 70% yield would be obtained easily. If the reaction is allowed to start too suddenly, or if heating is applied too soon, a considerable amount of hydrogen chloride is evolved, and yields are greatly cut down. It was never found advisable to heat higher than 70° at the very end of the reaction. Runs have been made on several kilograms of material at a time, and the operation conducted substantially as it is in the production of CCl_2F_2 from $CCl_4.4$

(2) Fluorination of $CH_{4}CHCl_{2}$.—The operation is conducted substantially as it is in the preceding paragraph, but yields are not as favorable, and decomposition is more difficult to prevent. Hence this operation was abandoned in favor of the following one.

(3) Fluorination of CH_3CHBr_3 .—Ethylidene bromide, made from paraldehyde, is placed in an ice-cold metal container equipped with an ice reflux condenser. Mercuric fluoride (theoretical quantity) is fed slowly into it through a wide rubber hose pinched by two screw clamps. The reaction proceeds rapidly, and CH_3CHF_2 distils through the condenser, and is collected in a receiver cooled with solid carbon dioxide, while the CH_3CHFBr and CH_3CHBr_2 are returned by the condenser for further fluorination. The fluorine in the mercuric fluoride is completely utilized. The amount of intermediate CH_3CHBrF is usually about 5%, when no effort is made to withdraw it from the reaction field as soon as it is formed.

(4) Fluorination of $CH_2BrCH_2Br.$ —The equipment is the same as in the preceding case. The reaction is quite vigorous. The intermediate compound CH_2BrCH_2F is, however, more easy to isolate than its isomer CH_3CHFBr . The reaction proceeds easily to complete utilization of the fluorine available in mercuric fluoride. However, due to the instability of CH_2FCH_2F very little of that compound is produced, and it is impossible to isolate it as a pure compound. Typical runs yielded about 50% CH_2FCH_2Br , about 10 to 15% of an unsaturated hydrocarbon which seemed to be a mixture of butadiene and butylene, about

(4) Midgley and Henne, Ind. Eng. Chem., 22, 542 (1930).

10% of CH₂FCH₂F and from 25 to 30% of very pure butyl fluoride. Despite efforts to improve the operation, the results were consistently discouraging.

(5) Fluorination of CH_2ICH_2I .—The procedure is the same as above and the results were almost identical in every respect but one, namely, that only a very small quantity of intermediate CH_2ICH_2F was isolated.

(6) Fluorination of CH₂ClCHCl₂.—This compound, heated under pressure with HgF₂ at about 140° gives about 50% yields of CH₂ClCHClF and only 8 to 10% of CH₂-ClCHF₂. Fluorination with a mixture of SbF₃ and bromine (10%), at 160° does not have any effect, while with 10% of SbCl₃ instead of bromine, the reaction proceeds very slowly; with 20% of SbCl₃, the reaction is considerably hastened, but side reactions make their appearance. With 20% of SbF₃Cl₂ as catalyst the side reaction became predominant by far, and the final yields are not better than 30 to 35% of CH₂ClCHClF and 8 to 10% of CH₂ClCHF₃. The purification is made considerably more difficult by the results of the side reactions.

(7) Synthesis of CH_2FCHF_2 .—Mercuric fluoride is fed into $CH_2BrCHBr_2$ (as in the third case) and the mixture is heated progressively to 140° ; this causes the quantitative production of $CH_2BrCHBrF$ or CH_2BrCHF_2 , according to the proportion of the reagents. Efforts to fluorinate the latter further failed repeatedly. It is better to obtain CH_2ICH_2Br by interaction of it with calcium iodide in alcohol, in sealed tube. (The yields were usually 60 to 65%, despite the fact that Swarts has obtained better than 85%.) This iodide is heated with HgF_2 in a nickel container in the manner described for the production of $CHF_2CHF_2^s$ and yields about 60% of CH_2FCHF_2 .

(8) Fluorination of $CH_2BrCHClBr$ —Heating with mercuric fluoride gives a quantitative yield of CH_2Br -CHClF, but only traces of CH_2BrCHF_1 .

Summary

New fluorinated derivatives of ethane, containing three or four atoms of hydrogen in their molecule have been synthesized, and their physical properties are tabulated.

THE MIDGLEY FOUNDATION

COLUMBUS, OHIO RECEIVED MARCH 23, 1936

⁽⁵⁾ THIS JOURNAL, 58, 884 (1936).